Training Workshop

On

Protocols for Clinical Trials

On

Ayurvedic Antidiabetic Drugs

Organized By

The NSF Research Committee on Traditional Medicine

Date : 26th June 2003

Time : 9.00 a.m. – 12.30 p.m.

Venue : NSF Auditorium
Training Workshop on “Protocols for clinical trials on ayurvedic antidiabetic drugs”

Organized by
The NSF Research Committee on Traditional Medicine Programme

Venue: NSF Auditorium
Date: Thursday, 26, June 2003
Time: 9.00 a.m. to 1.00 p.m.

9.00 a.m. Registration
9.30 a.m. Welcome Address. Chairman/Director, NSF
9.35 a.m. Introductory Remarks Dr S Sritharan, Chairman/RC
9.40 a.m. Overview of research on antidiabetic medicinal plants Prof. Eric Karunanayake, Faculty of Medicine, Colombo.
10.00 a.m. Discussion
10.10 a.m. Ayurvedic Aspects of diagnosis of Diabetes Dr Sujatha Ediriweera I I M
10.30 a.m. Discussion
10.40 a.m. TEA
11.00 a.m. Pharmacological method of evaluation for antidiabetic activity Dr B M R Fernandopulle, Faculty of Medicine, Colombo
11.20 a.m. Discussion
11.30 a.m. Development of Protocols on Diabetes for Clinical Trials of Ayurvedic Drugs Dr M H A Thisera, Gampaha Wickremarachchi Ayurveda Institute, Yakkala.
11.50 a.m Discussion
12.00 noon Conducting a Clinical Trial with relevance to Western Medicine Dr Kusum de Abrew, Faculty of Medicine, Colombo.
12.20 p.m. Discussion
12.30 p.m. Final Discussion and Summing up
Traditional medical systems provide a substantial medical service in developing countries. In Sri Lanka more than 70% of the population resort to Ayurvedic medicine as the first line of treatment (Karunanayake & Tennekoon, 1993). The therapeutic agents used in this system are mainly plant based. However, the majority of these plants have not been subjected to scientific evaluation of their therapeutic claims. A project was therefore launched in 1981 to undertake scientific evaluation of plants used in the treatment of diabetes.

Even initiating this project had to be delayed due to inadequate animal facilities available at that time. As for funding, I had by that time obtained a small grant of Rs. 75,000 from NARESA. Preliminary screening using experimental animals showed that Salacia reticulata (Kothalahimbutu), Aegle marmelos (Beli), Momordica charantia (Karawila) (Karunanayake et al., 1984) all had significant hypoglycaemic activity. The aqueous extract of M. charantia was shown to improve the glucose tolerance by newly diagnosed type 2 diabetic patients (Welihinda et al., 1986a). A subsequent study showed that the M. charantia extract enhanced glucose uptake by the peripheral tissues (Welihinda & Karunanayake, 1986b), thus throwing some light on the possible mechanism of oral hypoglycaemic activity.

Incubation of isolated beta cells, that produce insulin, with the freeze dried extract of M. charantia resulted in significant secretion of insulin (Welihinda et al., 1982). Further studies showed that the administration of fruit juice to streptozotocin (50mg/Kg body weight) induced diabetic rats for
period of one month does not show any beneficial effect on diabetes (Karunanayake et al., 1990). Streptozotocin at a dosage of 50mg/kg is known to irreversibly destroy all islet beta cells. The efficacy of the preparation to improve glucose tolerance in normal animals and its potency to facilitate glucose storage, the beneficial effects in non-insulin dependent diabetes and potent insulin secretory effect in vitro, when compared with the lack of any beneficial effect on streptozotocin induced experimental diabetes (50mg/Kg), strongly suggested that the oral hypoglycaemic effect of the fruit juice is primarily via the stimulation of insulin secretion. This hypothesis was tested and further confirmed by the administration of the fruit juice of M. charantia to streptozotocin induced diabetes of graded severity.

Thus the administration of M. charantia to streptozotocin diabetes of graded severity (10, 20, 30 and 40mg/Kg) showed that the preparation was effective as an oral hypoglycaemic agent only upto 20mg/Kg of streptozotocin (Jeevathayaran et al., 1995). This simply means that M. charantia is effective as oral hypoglycaemic agent only in the case of type 2 diabetes.

Despite the fact that medicinal plants have been used in the treatment of disease over many years, the possible toxic effects have not been elucidated. As part of our investigation on anti-diabetic plants we also investigated possible toxic effects. In laboratory animal experiments Momordica charantia was found to have no liver or renal toxicity (Tennekoon et al., 1994). Furthermore in later studies using radio tracer techniques we have clearly demonstrated that M. charantia fruit juice while inhibiting intestinal absorption of dietary glucose, facilitates glucose storage in the muscle and adipose tissue (Jeevathayaran, 2002).

It should also be mentioned that the work we initiated on the scientific evaluation of anti-diabetic plants stimulated several other groups to undertake similar studies using the experimental procedures we have published in peer reviewed international journals (Fernando et al., 1987; 1989; 1990; Fernandopulle et al., 1994a; 1994b; 1996;).
References:

AYURVEDIC ASPECTS OF DIAGNOSIS OF DIABETES

E.R.H.S.S. Ediriweera, Senior lecturer,
Dept. of Nidana Chikithsa, Institute of Indigenous Medicine, University of Colombo.

In Ayurveda, there is a disease described as Prameha that has twenty varieties with a main characteristic feature being increased quantity and turbidity of urine. (S.S. Ni. 6/6) Prameha means secretions or oozing of fluid from the body without stopping.

The twenty varieties of Prameha are: Udakameha, Ikshumeha, Sandrameha, Surameha, Pishtameha, Sukrameha, Sikathameha, Shithameha, Shanairmeha, Lalameha, Ksharameha, Nilameha, Haridrameha, Manjishtameha, Rakthameha, Vasameha, Majjameha, Madhumeha and Hasthimeha.

They originate in the following manner. Ten of these Pramehas originate due to vitiation of Kapha, six due to vitiation of Pitta and four due to vitiation of Vata. There are two schools of thought on the origination of Madhumeha. In Charaka Samhita one of the four Vataja Pramehas is described as Madhumeha (C.S. Ni 4 / 44). In Susrutha Samhita, a type of Prameha called Kshaudrameha with symptoms similar to Madhumeha is described under Vatajameha (S.S.Ni.6/ 12). But Susrutha Samhita also states all varieties of Prameha, if not treated in time, will ultimately become Madhumeha. (S.S.Ni.6/ 27) Diabetes mellitus can be correlated with Madhumeha.

In order to arrive at a diagnosis, according to Ayurveda, a physician should carry out Roga pariksha (Understanding of the ailment) and Rogi pariksha (Examination of the patient). Of these two, Roga pariksha should be done first, followed by Rogi pariksha.

ROGI PARIKSHA

Rogi pariksh (examination of the patient) could be done by using different methods. They are Thrivida Pariksha, Panchavida Pariksha, Shadvida Pariksha, Ashtavida Pariksha and Dashavida Pariksha.

1) Thrivida Pariksha (Threethfold method of examination)

Darshana Pariksha - visual inspection
Sparshana Pariksha - examination of patient by touch.
Prashna Pariksha - Interrogation

The questions should cover locality, family, race and cast, articles compatible to constitution and non compatibles, onset and history of present illness, chief complaint, general health, duration of illness normal passage of flatus, urine and stool etc. (S.S. Sut. 10/5)
2) **Panchavida Pariksha** (Fivefold methods of examination) (S.S. Sut. 10 / 5)(C.S.Vi.4/7)

This method of examination is done using the physician’s five sense organs.

- Darshana Pariksha - as above
- Sparshana Pariksha - as above
- Gandha Pariksha - examine the odors emitted from various parts of the patient’s body and excretions.
- Shravana Pariksha - listen to the sounds originate in the body e.g. voice, internal body sounds, sounds of joints.
- Rasa Pariksha - tests for taste of the body, urine etc.

3) **Shadvida Pariksha** (Six fold method of examination (S.S. Sut. 10 / 5)

This includes Prashna Pariksha in addition to Panchavida Pariksha.

With Prashna Pariksha, increased frequency of urination, increased quantity of urine, gathering of ants to the place of urination could be confirmed

4) **Ashtavida Pariksha** (Eight fold method of examination)
 (Y.R. purvardha 1/ Ashtasthan Pariksha -1)

- Nadi Pariksha - Examine patient’s pulse
- Muthra Pariksha -Examination of urine
- Mala Pariksha - Examination of feaces.
- Jihva Pariksha - Examination of patient’s tongue.
- Shabda Pariksha - As described under Panchavida Pariksha (Shravana Pariksha)
- Sparsha Pariksha - As described above
- Druk Pariksha - Examination of the patient’s eyes
- Akruthi Pariksha - Examination of the patient’s body in order to ascertain whether within the norms given in Ayurveda regarding a healthy body.
5) **Dashavida Pariksha** (Ten fold method of examination) (C.S. Vi 8 / 14)

Prakruthi Pariksha - Examination of physical and mental constitution.
(C.S.Vi 8/96-98)

Vikruthi Pariksha - Examination for morbidity (C.S. Vi 8 / 101)

Sara Pariksha - Constitutional dhathus (essences) (C.S. Vi 8 /102 - 110)

Samhanana Pariksha - Examination to decide whether the physique is properly proportioned. (C.S. Vi 8 / 116)

Pramana Pariksha - Anthropometry. (C.S. Vi 8 / 117)

Sathmya Pariksha - Suitability or compatibility to various food and Rasas.
(C.S. Vi 8/118)

Sattva Pariksha - Psyche or Mental status (C.S. Vi 8 / 119)

Ahara shakthi Pariksha - Ability of intake of food and Power of digestion
(C.S. Vi 8/120)

Vyayama shakthi Pariksha - Physical stamina (C.S. Vi 8 / 121)

Vayas Pariksha - Age (C.S. Vi 8 / 122)

INDICATIVE FACTORS

Having carried out a complete examination of the patient using above methods, certain symptoms indicative of diabetes would become noticeable to the physician. These methods and relevant indications are described in detail hereunder.

1) **Muthra Pariksha** (Examination of urine)

Collection of Urine

For the purpose of testing, both physician and the patient should wake up during the last four ghatika (96 minutes) of the night. Then the patient should pass some urine first and when halfway through, urine for testing should be collected in a crystal vessel and examined after sun rise. (Y.R. purvardha 1/ Muthra Pariksha -2, 3)

Urine should be examined by Darshana Pariksha, Sparshana Pariksha, Gandha Pariksha, Rasa Pariksha and Prashna Pariksha. Since all twenty Pramehas, if left untreated, could
lead to Madhumeha, the physician should pay attention for possibility of existence of all varieties of Prameha.

With Darshana Pariksha;
The Rashi (Volume), Varna (Colour) avila (Turbidity) should be examined. Quantity of urine will increase, colour may become similar to honey (Golden yellow) and turbid.

With Gandha Pariksha;
Odour may be similar to honey.

With Rasa Pariksha;
Urine may have a sweet taste.
Though Susrutha Samhitha advocates tasting of urine by the physician (S.S. Sut.10/5), Charaka Samhitha recommends to observe, insects such as ants gathering where the patient has urinated, in order to confirm sweetness (C.S. Vi 4/7).

With Prashna Pariksha;
Increased frequency of urination,
Increased quantity of urine,
Gathering of ants to the place of urination could be confirmed.

With Sparsha Pariksha;
By touch acidity, alkalinity, stickiness, rough, level of warmness which could be indicative of various types of Prameha can be felt and identified. Identification of them could help the physician in deciding the possibility of onset of Madhumeha.

By examining the status of urine, the vitiated Doshas in the patient could also be decided. In vitiated Vata, urine will be pale in colour (Pandu Varna), in vitiated Kapha frothy and in vitiated Pitta red in colour. The understanding of vitiated Dosha will also be a factor that would assist the diagnosis of Madhumeha. (Y.R. purvardha 1 / Muthra Pariksha-4).

2) **Sweetness of the body**

The whole body become sweet (Madhuryathano rathak) in Madhumeha. One possible indication of this would of flies and ants to the body. Patients also may feel sweetness in mouth.

3) **Ahara shakthi Pariksha**

Ability intake of food would increase and desire for food of all taste could persist.
ROGA PARIKSHA

Should be carried out through Pancha Nidana that is Nidana (Causes, Aetiology), Purvarupa (Prodromal symptoms), Rupa (Clinical features), Upashaya (Test carried out by the physician to arrive at a correct diagnosis in doubtful or difficult conditions) and Samprapthi (Pathogenesis). (A.H. Ni. 1/2)

Nidana (Aetiology)

Main causes for diabetes are:

i) Sahaja Nidana (Hereditary causes). (S.S. Ci. 11/3)

ii) Apathyaja Nidana is insalubrious activities such as:

- Excessive sleep,
- Use of soft cushions etc. for a long period,
- Excessive consumption of curd, milk, jaggery, sugar, food made out of fresh grains and flesh of domestic and aquatic animals,
- Use of fresh rain water
- Stress generated through unsatisfied sexual urges.
- Factors that increase Kapha (C.S.Ni 4/5, Han. N. prameha nidana 428)

Purvarupa (Prodromal symptoms)

- Accumulation of dirt on the teeth, palate, tongue and throat,
- Thirst,
- Dryness of mouth palate and throat,
- Feeling of numbness and burning sensation in the palms and soles,
- Lassitude,
- Matting of hair,
- Stickiness of the skin all over the body,
- Sweet taste in the mouth and gathering of bees and ants on the body and where voided urine has fallen. (C. S. Ni. 4/47, S.S.Ni. 6/5)

Rupa (Clinical features)

- Urine become Madhura (similar to honey), Kashaya (astringent), Ruksha (rough) and pale in colour,
- Depletion of tissues,
- Whole body becomes sweet. (C. S. Ni. 4 / 44)
Upashaya (Tests that should be carried out to arrive at a correct diagnosis in doubtful or difficult conditions)

Administering of certain drugs, food or activities and observe whether condition of the disease improves or worsens.

Samprapthi (Pathogenesis)

Vitiated three Doshas, Vata, Pitta and Kapha, with Vata being predominant, will combine with seven Dhathus vitiating them as well and produce Madhu meha.

(In this context Dhathus are substances that govern and support the metabolic and catabolic functions of the body. They are; Rasa dhathu, Raktha dhathu, Mansa dhathu, Medas dhathu, Asthi dhathu, Majja dhathu and Sukra dhathu).

In Roga Pariksha, if it could be confirmed that the aforesaid aetiological factors, prodromal symptoms, clinical features, pathogenesis and upashaya that indicate Madhumeha are present, it would facilitate the diagnosis.

Ayurveda shows that the following complications could occur in Madhumeha. Prameha pidaka (Carbuncles S.S. Ni 6 /15-21), anorexia, vomiting, too much of sleep (A.H. Ni. 10 /22), fainting, diarrhoea, fever, cracks in the skin of scrotum, pain in bladder region and penis, (A.H. Ni. 10 /23), increased breathing, headache, desire for eatables of all tastes, tremors and emaciation (A.H. Ni. 10 /24). It is also said that onset of these complications would be at the advanced stages of the disease. Identifying these complications would provide clues to confirmation of existence and the degree of Madhumeha.

DIFFERENTIAL DIAGNOSIS

In diabetes mellitus excessive urination, glycosuria and raised fasting blood sugar are present. According to Ayurveda, there are three Pramehas that would show excessive micturition and presence of sugar in urine. They are Ikshumeha, Madhumeha and Shithameha. Further, in Udakameha, the volume of urine is excessive but there is no sugar present in urine. This could be separately identified using the earlier mentioned methods of examination.
<table>
<thead>
<tr>
<th>Madhumeha</th>
<th>Ikshumeha</th>
<th>Shithameha</th>
<th>Udakameha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitiated Vata Dosha is prominent</td>
<td>Vitiated Kapha Dosha is prominent</td>
<td>Vitiated Kapha Dosha is prominent</td>
<td>Vitiated Kapha Dosha is prominent</td>
</tr>
<tr>
<td>Emaciation or obesity</td>
<td>Emaciation</td>
<td>Emaciation</td>
<td>Emaciation</td>
</tr>
<tr>
<td>Loss of Ojas (causing loss of vitality and immunity)</td>
<td>No loss of Ojas</td>
<td>No loss of Ojas</td>
<td>Loss of Ojas</td>
</tr>
<tr>
<td>Palliative or Incurable</td>
<td>Curable</td>
<td>Curable</td>
<td>Palliative or Incurable</td>
</tr>
<tr>
<td>Urine is abnormally warm</td>
<td>Urine is abnormally warm</td>
<td>Urine is cold to touch</td>
<td>Urine is cold to touch</td>
</tr>
<tr>
<td>Turbid urine</td>
<td>Turbid urine</td>
<td>No turbidity in urine</td>
<td>Little turbidity in urine</td>
</tr>
<tr>
<td>Chronic onset</td>
<td>Acute onset</td>
<td>Acute onset</td>
<td>Chronic onset</td>
</tr>
<tr>
<td>Sweetness in the body</td>
<td>No sweetness in the body</td>
<td>No sweetness in the body</td>
<td>No sweetness in the body</td>
</tr>
</tbody>
</table>

I would like to emphasize that most of these aetiological factors, prodromal symptoms, clinical features, investigations and complications were identified and described over 2000 years ago. But when considering with an open mind, all the salient points are very much in line with modern findings and are appropriate even today.

Abbreviations

A.H. - Ashtanga Hradaya
C.S. - Caraka Samhitha
Hans. N. - Hansaraja Nidana
M.N. - Madhava Nidana
S.S. - Susrutha Samhitha
Y.R. - Yoga Rathnakara

9th June 2003.
Pre-clinical testing of herbal medicines for antidiabetic activity
Dr Rohini Fernandopulle
Senior Lecturer in Pharmacology
Faculty of Medicine, Colombo

Traditional preclinical testing approach consists of ten steps
- Identification of the plant
- Collection of plant
- Transport to the research laboratory
- Storage
- Preparation of extracts
- Administration of extracts to the animal model

Traditional approach consists of ten steps contd
- Identification of the active substance(s)
- Further fractionisation of the active extract
- Identification of the active principle, chemical structure
- Synthesis of the active principle

Chandigarh group – Chaudhury et al 1980
- Toxicity testing in two species of animals for acute and subacute toxicity
- Administration of the total extract or combination of plants used in exactly the same way as it is prepared and used by the population

How do you determine absolute dose for a species?

<table>
<thead>
<tr>
<th>Dose (g)</th>
<th>Mouse</th>
<th>Rat</th>
<th>Guinea Pig</th>
<th>Rhesus</th>
<th>Cat</th>
<th>Dog</th>
<th>Monkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.100</td>
<td>0.05</td>
<td>0.02</td>
<td>0.005</td>
<td>0.01</td>
<td>0.005</td>
<td>0.002</td>
</tr>
<tr>
<td>5</td>
<td>0.050</td>
<td>0.025</td>
<td>0.012</td>
<td>0.0025</td>
<td>0.005</td>
<td>0.0012</td>
<td>0.00025</td>
</tr>
<tr>
<td>2</td>
<td>0.025</td>
<td>0.012</td>
<td>0.006</td>
<td>0.0012</td>
<td>0.0025</td>
<td>0.0006</td>
<td>0.00012</td>
</tr>
<tr>
<td>1</td>
<td>0.012</td>
<td>0.006</td>
<td>0.003</td>
<td>0.0006</td>
<td>0.0012</td>
<td>0.0003</td>
<td>0.00006</td>
</tr>
</tbody>
</table>
Multiply the absolute dose given to the species in a row by the factor given at intersection of relevant row and column.

Example
If the dose producing an effect in a 12 kg dog is 10mg/kg the absolute dose is 120mg.
Extrapolated to man the dose in man = 120mg X 3.1 = 372mg.

Acute toxicity test
- Yamanaka S et al, A simple method for screening assessment of acute toxicity of chemicals
- Arch Toxicol, 1990;64:262 - 268

Subacute toxicological tests for plant substances used by people
- Depends on country and Ethics committees
- Sweden -
 - 30 rats given the decoction for three weeks: 3 doses
 - 4 female monkeys given the decoction daily for 30 days
 - 4 adult dogs given the decoction for 12 weeks
- India - Chandigarh group
 - Six week toxicological profile on two species

Guidelines on acute and repeated dose toxicity
- EMEA guidance on acute and repeated dose toxicity
 - http://www.eudra.org/emea.html

History of Biguanides
- Galenga officinalis, goat's rue
 - Was used to treat diabetes in Europe in medieval times
 - Early part of 20th century - isolated the active principle, guanadine
 - But was too toxic
- 1920 Biguanides were investigated but overshadowed by discovery of insulin
Allopathic drugs

- Insulin
- Oral hypoglycaemics:
 1. sulfonylureas
 2. biguanides
 3. competitive inhibitors of intestinal brush-border alpha-glucosidases
 4. thiazolidinediones

Blood glucose decreasing activity

- Fasting state
- Glucose loaded state
- Diabetic state - alloxan, streptozocin
- Single dose studies
- Multiple dose studies over a period of time
- Compare with western drugs

Mechanisms of action

- Increase insulin secretion by the pancreatic islets or reduce hepatic clearance of insulin
- Increase the peripheral utilisation of insulin - increased entry into skeletal, cardiac and smooth muscle and adipose tissue
- Inhibit hepatic gluconeogenesis and glycogenolysis
- Decrease glucagon levels

Mechanism of action

- Plasma insulin levels
- Isolated tissue preparations
- Effects on Glucose transporter GLUT 4
- Effects on glucose metabolising enzymes -
 - Glycerol - 3- phosphate acyltransferase
 - Glycogen synthase

Monitor control over time

- Measure HbA1c levels
- Lipid profile
Conclusion

- Animal studies
- Toxicity
- Phase II clinical trials
- Phase III clinical trials
- Define possible mechanism of action by performing in-vivo and in-vitro bioassays
Development of Protocols on Diabetes for Clinical trials of Ayurvedic Drug

Dr. M.H.A. Tissera
Gampaha Wickremarachchi Ayurveda College, Yakkala

Aims of Clinical trial on a new Drug

Find a more effective drug
Find a more safe drug
Find a more cheap drug

Objectives of Clinical trial on Ayurvedic Drug

Study of the efficacy of an Ay. Drug
Find the mode of action of an Ay. Drug
Study the effectiveness of a different type of a preparation

Phases of Clinical Evaluation Drug

Phase 1: Preclinical testing by clinical pharmacologist
Phase 2: Clinical testing by clinical pharmacologist
Phase iii: Clinical trial by Clinical investigator
Phase iv: Post marketing surveillance by practicing clinicians.

Trial Design

Select a trial design.
Randomization
Control-placebo/Standard drug
Open /double blind/single blind
Parallel/crossover.

Selection on the Drug

Should be a prescribed formula in authentic book.
Formulated drug according to Ayurveda Dravya guna Vignana
Private formula -

Should have good records of its effectiveness.
Should have subjected to toxicity studies and calculated the effective dose.

Should have proved the efficacy by experimental and primary researches

Researcher

Should have a through knowledge on Diabetes
Should have knowledge on clinical trial
Should have an authority to treat the patients

Project title

Specific, unambiguous
Main aim be understood

Introduction

Problem - Background information
 Literature review
 Review of previous works
Purpose - How we plan to solve the problem

Benefit - To diabetic patients
 To the Ayurvedic system
 To economy of Sri Lanka

Project Description

Preparation of the Drug
Selection of patients
Method of Drug administration
Collection of data
Method of evaluation

Preparation of the drug

1. Raw
2. Prepared

Collection
Identification
Method of preparation
Selection of Patients

Where the trial will take place

Blood sugar level

Age, Sex

Exclusion criteria

Ethical consideration

Ethical Consideration

Method, how the consent of the patient will be obtained

Approval from an Ethical Committee.

Method of drug administration

Dose; Should be calculated according to Ayurvedic formula

Should be established according to the results of phase 1 experiments

Frequency: Should be according to the Ayurvedic regime

Collection of data

Daily urine Sugar

Blood sugar in every two weeks

Symptoms of Diabetic

Symptoms of Madhumeha

Any other complains

Method of evaluation

To Avoid Errors of Type I (false positive) and Type II (false negative)

use appropriate method of statistics

1. Student's t Test (paired or unpaired)

2. Wilcoxon's signed rank test (on paired data)
How to conduct a clinical trial in diabetes mellitus using oral hypoglycaemic drugs

Kusum de Abrew
Department of Pharmacology
Faculty of Medicine
Colombo

A clinical trial of medicinal products
A systematic study in human subjects (patients or healthy volunteers)
To discover or verify effects and adverse reactions
Study their pharmacokinetics
Ascertain the efficacy and safety

Clinical development of a new product
Phase I: on healthy volunteers
Phase II: therapeutic pilot studies
Phase III: trials in large patient groups and in varied groups to determine long term efficacy and safety
Phase IV: post marketing surveillance

What is considered "Gold Standard" in research are randomised, placebo controlled double blind clinical trials

Main components of a research protocol
- Research questions (objectives)
- Significance of the objectives
- Study design
- Selection criteria
- Sampling methods
- Predictor variables
- Outcome variables

Main components of a research protocol (continued)
- Criteria for premature stopping of trial
- Statistical issues
 - sample size
 - estimation methods
 - analytical methods
Characteristics of a good research question
- Feasible: adequate number of subjects and technical expertise, affordable in time and money, manageable in scope
- Interesting to the investigator
- Novel
- Ethical
- Relevant to scientific knowledge, clinical and health policy

Two sample research questions
1. How effective is drug A in controlling blood glucose in newly diagnosed type 2 diabetics?
2. Is drug A (new drug) more effective than drug B (existing drug) in controlling blood glucose?

Designing inclusion criteria
Specify the characteristics that define populations that are relevant to the research question and efficient for the study

Inclusion criteria
- Target population: Type 2 diabetics
- Accessible population: Patients attending the diabetic clinic of the NHSI

Define clinical characteristics (example)
- Newly diagnosed diabetics
- Not previously treated with oral hypoglycaemic drugs (OHDs)
- Age 40 to 60 years
- Six to eight weeks on dietary therapy
- Poor control

WHO criteria for diagnosis of diabetes mellitus

<table>
<thead>
<tr>
<th>Fasting blood Glucose (FBG)</th>
<th>Venous blood mmol/L</th>
<th>Capillary blood/venous plasma mmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes mellitus</td>
<td>>6.1 (110 mg/dl)</td>
<td>>7 (126 mg/dl)</td>
</tr>
<tr>
<td>Impaired FBG</td>
<td>5.6–8.1 (100–110 mg/dl)</td>
<td>8.1–7 (110–126 mg/dl)</td>
</tr>
<tr>
<td>Diabetes unlikely</td>
<td><5.6 (100 mg/dl)</td>
<td><6.1 (110 mg/dl)</td>
</tr>
</tbody>
</table>

Diabetes mellitus	>10.0 (180 mg/dl)	>11.1 (200 mg/dl)
Impaired glucose tolerance	6.7–9.9 (120–179 mg/dl)	7.8–11 (140–199 mg/dl)
Diabetes unlikely	<5.6 (100 mg/dl)	<6.1 (120 mg/dl)
Targets for control

<table>
<thead>
<tr>
<th></th>
<th>Good</th>
<th>Borderline</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBG mg/dl</td>
<td>80-110</td>
<td><140</td>
<td>>140</td>
</tr>
<tr>
<td>mmol/l</td>
<td>6.1</td>
<td><7.8</td>
<td>>7.8</td>
</tr>
<tr>
<td>PPBG mg/dl</td>
<td>80-144</td>
<td><180</td>
<td>>180</td>
</tr>
<tr>
<td>mmol/l</td>
<td>4.4-8</td>
<td><10</td>
<td>>10</td>
</tr>
<tr>
<td>HbA1c%</td>
<td><6.5</td>
<td><7.5</td>
<td>>7.5</td>
</tr>
</tbody>
</table>

Define exclusion criteria

- Those likely to be lost for follow-up
- People unable to provide good data
- Ethical barriers:
 - Patients with diabetic complications and patients with other illnesses
 - Patients with very high blood glucose (FBG > 250 mg/dl, PPBS > 300 mg/dl)
 - Patients with FBG < 140 mg/dl and PPBS < 180 mg/dl with two weeks of intensive dietary therapy
 - Patients previously treated with OHDS
- Subjects who refuse to participate

Study design

- Prospective
- Parallel group
- Randomised
- Double blind
- Controlled
- Weekly dose increment until target blood glucose values are achieved
- Stratify according to blood glucose level

Time frame and ethical approval

- Starting date 1st August 2003
- Sample size 100 patients
- Two weeks of intensive dietary therapy
- Duration: three months
- Informed consent, management of adverse events/complications

Exclusion criteria

- Ethical barriers: use of placebo drugs
- Patients with complications
 - Retinopathy
 - Nephropathy
 - Neuropathy
 - Cardiovascular disease

Variables

- Predictor variables
- Outcome variables
- Weekly blood glucose, FBG & PPBG
- Blood glucose series once in 2 weeks
- HbA1C in three months